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Abstract: Finite-mass sum rule and duality considerations for the inclusive process ab--, cX lead 
to a number of interesting relations amongst the quasi-two-body cross sections ab-+ cd i, 
where d i denotes the prominent resonances in the missing-mass channel. The processes 
rr (K)N ~ NX are studied in detail, and the main results are the following: 

(i) A superconvergence relation for reggeon (O) -particle (n) scattering gives a sum rule 
connecting the p-exchange cross sections (da/d t) [rr-p--+ Or °, co, A 0) n]. 

(ii) Semi local duality considerations in reggeon-particle scattering relate the resonance 
production cross section (do/d t) [n (K)N-+ N di] to the resonance mass in terms of the trajec 
tory a.(t) of the exchanged reggeon. From this the two following corollaries follow: 

(iii) The ratio of n to (f-to) exchange contributions increases linearly with the resonance 
(mass) 2. 

(iv) The resonance production cross sections get less peripheral with increasing resonance 
mass. 

All the above predictions agree reasonably with the available data on mesonic resonance 
production. 

1. Introduction 

The ordinary f ini te-energy sum rules for two-body scattering have been recently 

ex tended  to the case o f  inclusive reactions [1 ], where they are referred to as finite- 

mass sum rules (FMSR).  For  the inclusive process ab ~ c X ,  the F M S R  relate an inte- 

gral over the low missing-mass (small M 2) region to the triple-Regge l imit  (large M2).  

Several applicat ions [2, 3] of  FMSR have been made in the study of  inclusive reac- 

tions, in part icular  to est imate the triple-Regge couplings,  of  which there are not  yet  

reliable est imates f rom direct fits to the missing-mass distr ibutions.  

It has no t  been generally recognised, however ,  that  FMSR have strong predictive 
power  in the con t ex t  o f  quas i - two-body reactions. The present  work  is exclusively 
devoted to applicat ions o f  FMSR to processes o f  this kind. The crucial hypothesis  is 
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the Harari-Freund two-component duality [4] which associates the background and 
resonance parts of the missing mass integral with the pomeron and Regge compo- 
nents of the triple-Regge term, respectively. Thus one gets a relation between a sum 
of resonance production cross sections on one hand and a triple-Regge term(s)on 
the other (i.e. eqs. (10) and (11) of sect. 2). It is possible to derive from this many 
useful relations amongst the resonance production cross sections even without know- 
ing the triple-Regge couplings. 

The main results we derive follow from two considerations of the FMSR, (a) super- 
convergence and (b) semi-local duality. 

(a) It is possible to construct a combination of inclusive cross sections, correspond- 
ing to exchange of exotic quantum numbers, for which the triple-Regge terms vanish. 
In this case the corresponding FMSR reduces to a sum-rule involving several resonance 
production cross sections. 

(b) Assuming the FMSR to hold semi:locally in the missing mass, M 2, means that 
the resonance production cross section is related, on the average, to the resonance 
mass M R by the relation 

~ d ° i R ~ ) . ~ ( M 2 ~ ° ~ M ( ° ' - 2 a i ( t )  ' 

dr~ 

at fixed s and t. There are two immediate corollaries from this:- 
(i) The ratio of  n to f-co exchange in resonance production is predicted to increase 

linearly with the resonance mass squared. 
(ii) The resonance production cross section do/dt  is predicted to show an antish- 

rinkage with increasing resonance mass [5]. 
It is worth emphasising that we are interested only in the low missing-mass end of 

the inclusive reaction. This is described by a reggeon-particle amplitude for which the 
application of two-component duality is believed to be unambiguous. The only ex- 
ception may be with respect to pomeron-particle scattering [6] which we shall not 
consider here [7]. 

In sect. 2 we discuss kinematics and outline the essential steps in the derivation of 
the FMSR. Several applications to quasi-two-body cross sections are categorised in 
sect. 3 and compared with data on production of meson resonances, 7r(K)N~NX. In 
sect. 4 we discuss some of the practical aspects involved in extracting the reggeon- 
particle forward amplitude from experimental data. We have, of  course, exhausted 
only a very small part of the quasi-two-body data. Many more phenomenological 
analyses can be made in this direction, using the existing resonance production data. 
A few of  these are indicated in the concluding section. 

2. Formalism 

Consider the inclusive process ab-+ cX in the kinematic region (fig. 1 a) 
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Fig. 1. (a) The inclusive process ab-~ cX. (b) The forward abc--* abe-amplitude for ;~> t , s ~ M  2. 

s > t  , (l) 

s > > M  2 , ( z )  

where s is the incident energy, t the momentum transfer between a and c and M is the 
missing mass. In this region the inclusive cross section is dominated by the leading 
Regge exchanges in the a~ channel 

d2° ~. ~,a~,a~;i;]~ Disc f i j (M2,  t) . (3) 
.= ./~i ~j* ~ ~-÷~i (t)+ ~ / ( t ) -  2 

dM2dt  tl 

Here/5 stands for the reggeon coupling and ~ is its signature factor. According to 
the generalised optical theorem, the inclusive cross section is proportional to a dis- 
continuity in M 2 of the forward a b g ~  abg amplitude (fig. lb). Hence f q  (M 2, t) re- 
presents the amplitude for reggeon-particle forward scattering. 

The M 2 -+oo limit o f f i  I (M 2, t) is given by the triple-Regge formula: 

k t k (M2)~k (°)-c~i(t)-c~f(t) Discfi/(M2, t) > ~ g i / ( ) / S b B ( O )  (4) 
M 2 ~ , ~  k 

where gk  (t) is the triple-Regge coupling (fig. 2). 
The analyticity properties in M 2 of f i / (M 2, t)have been investigated in perturba- 

tion theory [8] and in the dual resonance model [9]. Based on these results, one 
normally assumes that f0.(M2 , t )has the same analyticity structure as the elastic two- 
body amplitude, namely right- and left- hand cuts corresponding to the s-channel and 
the u-channel physical regions. 

Knowing the analyticity properties and the high M 2 behaviour offo. (M 2, t) the 
FMSR can be derived in the usual way [1]. It is convenient to use the variable 

t ~ k  (ol 

b :~ , ~, b 

Fig. 2. Triple-Regge graph. 
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u = p b ' ( p a - - P c  ) =~  ( M 2 - t - m  2) , (5) 

which is odd under s ¢~ u crossing. Our analysis will be restricted to cases where there 
is no significant interference between different reggeons in the initial and final states 
- i.e. to amplitudes of the type f/i ( M2, t). If  we write 

Aib (u, t) = Disc f/i (M2, t) , 

the u-channel discontinuity Aib ( -  u, t) is given by 

(6) 

AT- b (v, t) = A ib ( -  p, t) , (7) 

and can be obtained from the inclusive reaction cb ~ aX by factorisation as in (3). 
For a given exchange i= j  in (3) we now have the FMSR 

N 
f dvu n [Aib(V,t)+ ( -  1) n+l A~-b(V,t)] = ~ ( 1  + ( - - l ) n + l r )  
0 

Na (0)- 2ai(t)+n+l 

X - K ~ t ~  (0) e~K (O)-- 2ai( t)+n + l ' g~. t ) Vb5 (8) 

N 

f 
0 

dpp n [A ib (/2, t) + ( -- 1 ) n A ~ (l), t)] = ~  ( l + ( - 1) n TK ) 
K 

N~K (O)-2ai(t)+n+ 1 

× g~( t )~5(O)  OL (0)--  2Oti(t) +n + l +R(un)(t) " (9) 

In (8) and (9), T K is the signature of the trajectory K and R~n)(t) is the residue of the 
nonsense wrong signature fixed pole in the reggeon-particle amplitude. Following the 
two-component duality hypothesis [4], we shall assume (8) and (9) to be satisfied 
separately for the resonance (R) and background (B) components of Aib, with • on 
the right corresponding to pomeron (P) and the leading meson Regge (M) exchanges, 
respectively. In terms of the inclusive cross sections of eq. (3) then, the FMSR are 

N /[- da~'R dO~'R 1 i 2a.(t)- 2 
f dvvn - - - -  + ( _ 1 )  n+l -i[Ja~(t)121~i(t)[2~ ' 
0 t-dM2d t dM2dtJ - 

NapNl(O)-2ai (t)+n+ 1 
P34 (t) (JPb~ d (0) - 2{~ i (t) + n + 1 ' ( 1 O) X [1 + ( -  1) n+l TpM ] gu. ~PAI (0) 
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N ~do/B, R l)n duB'R 7 i (t)]2[~i(1)]2 2c~i(t)-2 
f dm~ n - -  + ( -  - -  =[/3aa- s 
0 kdM2d t dM2d t a 

Nc~P,M (0) - 2~ i (t)+n+ 1 
X 1(1 +(  1)nrp,M)g P'M (t)/3P~ ~vl (0) u ~ p ~  (0 ) - -  2~ i ( t )+n+ l +R(n)B'R (t)] , 

(11) 

where (do i /dM2d t) ((dOi/dM2d t)) denotes the i exchange contribution to the inclusive 
cross section for ab -+ cX (cb ~ aX). The M on the right corresponds to a summation 
over the exchange degenerate p - co - f -  A 2 contributions. 

3. Applications 

We shall apply the resonance component of the FMSR (10) and (11) to the mesonic 
resonance production cross sections in 7rN-+ XN and KN ~ XN. The prominent re- 
sonances in the missing-mass channel X are 7r, p, w, f, A1, A 2, g for the 7r-beam and K, 
K*, Q, K** for the K beam. The leading trajectories (i) in the NN channel are P, f, co, 
/9, A2, 7r and presumably B. 

There are certain problems involved in extracting the reggeon-particle amplitude 
Aib (M 2, t) from experimental data. The most important of these is to isolate the dif- 
fractive (P-exchange) part of  the resonance production cross sections from the non- 
diffractive part, since we have assumed Harari-Freund duality only for the latter. 
Apart from the elastic cross sections, P-exchange can contribute to K*, K**, Q, At 
and A 2 production. The non-diffractive part of  the elastic cross sections has been 
taken from the existing Regge fits, based on energy dependence, cross-over etc. As a 
first approximation we have assumed K*, K** and A 2 to be purely non-diffractive on 
the basis of the Gribov-Morrison rule [ 10]. The recent Serpukhov data [ l l ] on A 2 
production seems to cast some doubt on this. However, we believe most of  our re- 
sults do not depend crucially on this assumption. 

The A 1 and Q mesons are dominantly diffractively produced. We have estimated 
the amount of  non-diffractive exchanges from the cross-over effect in the t-distribu- 
tions [ 12]. 

The applications of  FMSR to resonance production processes considered here fall 
into two broad categories: superconvergence relations and semi-local duality. 

3.1. Superconvergence  

It is sometimes possible to construct a linear combination of elastic reggeon-par- 
ticle amplitudes which corresponds to exotic quantum number exchange in the bb 
channel. In this case the triple-Regge contribution on the right-hand side of  eq. (l 0) 
vanishes. The background contribution to the missing-mass integral also vanishes by 
Harari-Freund duality. Thus we would get a sum rule involving the production cross 
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sections for the resonances in the missing-mass channel, which is expected to hold 
over a significant t-interval. 

One application of this kind was recently made [ 13] for a combination of p +-p 
scattering amplitudes (in 7r±p --* rr°X)corresponding to isospin 1 in the p~ channel. 
Evidently, this amplitude is not superconvergent, and one had to rely on the small- 
ness of the non-flip pp~ coupling to ignore the triple-Regge term in eq. (10). The 
phenomenological success of the resulting sum rule was, nonetheless, very encourag- 
ing. 

A genuine super convergent combination can be formed from the prr amplitudes 
which corresponds to isospin 2 in the rr~r channel. This is the combination 

A +A - 2 A  (12) 
p--  + p rr + p Orr+ • 

The prominent resonances in the prr channels are rr, co and A 2. There is very little A 1 
in the charge-exchange production mode. 

Superconvergence relations can be written down for both the odd and even crossing 
sum rules and we discuss each in turn. 

(i) The odd crossing superconvergence relation. Substituting NN or N& for the 
a~ channel and using some isospin relations, eq. (10) reads for n = 1, 

do do O 
( -  t) ~ o  ( r r -p-+rr°n)-  (m 2co - t  m 2) ~ - ( r r - p - ~  con) 

do 
+(rn2  z t - m  2 ) - - ~ - ( a - p - + A ~ n ) = 0  , (13) 

with an identical relation for the 7r+p + lr°A ++, rr+p-+ ooA ++ and 7r+p-+ A~ A ~- cross 
sections. 

The p-exchange is known to dominate the rr-p ~ #°n and rr+p -+ 7r °A44 cross sec- 
tions. For the oo-production cases, we assume dao/dt to be given by (Pl 1 +P 1-1) 
do/dt, This is supported partly by the energy dependence and partly by a sharp dip 
in the forward direction [14, 15], indicating small-cut effects*. For A~ production 
we have no direct estimate of the p-exchange contribution. Evaluation of the density- 
matrix elements is complicated by the presence of s-wave background. There is strong 
indication of a large contribution to charge-exchange A 2 production from lower 
lying (e.g. B) singularities since the cross section falls like p~a 2 in the 4 - 8  GeV/c range 
[16]. However, it is possible to estimate the p-exchange contribution in a - p - +  A~n 
from the lr-p-+ A~-p and elastic l r -p data, by using exchange degeneracy between the 
f-and p-coupling to rrA 2. Both the density matrix measurements and the energy de, 
pendence of (do~dO 0 r -p -+  A~ p)suggest this cross section to be dominated by f, 
p-exchange in the 5 -+ 15 GeV range. 

Exchange degeneracy then gives 

/ do d0f,. ° 0 r - p ~ A 2 P ) /  dof, p 
do ~ A ° n )  -d~ "-(rr-p-+rr°n)-  dt d 7  0 r -P  ~ 0r-p_+Tr-p) . (.14) 

• There is, however, no evidence for a wrong signature dip in ~r-p--* con (ref. [14])although there 
is some evidence for ~uch a dip in ~+p--* coA ++ (ref. [15]). 
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Fig. 3. Experimental values of contributions to the superconvergence relation (15), evaluated from 
the data of refs. [ 14, 17, 20] using the method described in subsect. 3.1. 

We have estimated (dop/dt)  ( n - p  ~ A0n)from the data on the differential cross 
section and density-matrix elements of  7r-p ~ A~p at 7.5 GeV/c (ref. [17])using the 
Barger-Phillips [18] estimate of  f-and p-exchange in 7rp scattering. 

The resulting contributions to the sum rule (13)are shown in fig. 3. The agree- 
ment is remarkable, considering the various approximations involved. 

We should point out that the (doo/dt)  (Tr-p ~ A°n)calculated from the exchange 
degeneracy relation (14) or alternatively from our sum rule (13) turns out to be only 

30% of the net do/dt  at 7.5 GeV/c. This ties in with the rapid fall off  of  do/dt  in 
this energy range. It may appear a very surprising result nonetheless, since p-exchange 
seems to account for ~ 60% of the ca-production cross section [14] at this energy. 
However, we shall see from the semi-local duality considerations in subsect. 3.2. that 
the ratio of the contribution from B-exchange to p-exchange is, indeed, expected to 

2 2 0 increase by a factor ~ 3 (=M A /M~o) in going from co to A 2 production. Hence we 
z 0 

predict that the quantity (Pl l  + P l - 1 ) f o r  A 2 production at 7 GeV/c will be much 
smaller than 1. Because of this dominance by non-leading Regge exchange at 7 GeV/c, 
the cross section at higher energies will continue to decrease faster than would be ex- 
pected from pure p-exchange. 

(ii) The even crossing superconvergence relation f ixed poles and Regge cuts. In 
contrast to the situation in particle-particle scattering, the fLxed-pole residues for Reg- 
geon-particle scattering have important physical significance. In the Gribov calculus 
[ 19] it is these quantities which govern the size of the Regge cuts for two-body scat- 
tering. From eq. (11)i t  can be seen that the evaluation of the even-crossing sum rule 
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provides a method of estimating the fixed-pole residue, R(~ .°) (t). This is then related 
to the ii Regge-cut contribution for the forward bb scattering amplitude by 

F cut (0) = / ' ~  f d t  [R}i0)(t) s ~i(t) } ~i(t)] 2 (15) 
7r2q 

There have been some attempts to estimate the fixed-pole residues for p-p (ref. [3]) 
and pomeron-p (ref. [2]) scattering using the n = 0 sum rule with 1 = 0 in the p~ chan- 
nel. These evaluations suffered from the large uncertainty in the relevant triple-Regge 
contributions, consequently no quantitative estimate could be given for the pp or PP 
cuts in pp scattering. 

The uncertainty of the triple-Regge couplings is, of course, removed if we choose 
a superconvergent sum rule - i.e. one where bb is an exotic channel. Furthermore, it 
is of added phenomenological interest to calculate the size of the Regge-Regge cut for 
two-body scattering in the case where the t-channel is exotic. 

We again consider the same combination (12)for  p-rr scattering, to ensure l = 2 in 
the 7rrr-~pp channel. The n = 0 sum rule then gives 

do do do 
o (rr-p_+ ~On) o d i  ~7-(r r -p-+con)  + ~ ( r r  p -+aOn)  

2c~p (t) 2 
= 2s I/3~(t)12[~ ° (t)12R(p~(t) . (16) 

For the a0 and co production, we again use the 7 GeV/c data [14, 20] used in the 
superconvergent relation (13)while using that relation itself to estimate the A 0 cross 
section. 

In fact we can eliminate (doo/dt) (rr-p-+ A 0 n) f rom (13)and (16)and express the 
fixed pole residue in terms of the OTrTr vertex,/3P% 0 (t), which is well determined 

R ~ ; 2  (t) 1 p ]2 I m2) d°p dup )] = 7rr[/3 %0 ( t ) ( m 2  z - ~ 7 -  (rr-p-> rr°n) - (m2  - m 2  ) ~ 7 -  (rr-p--> con 

X i(m 2 t _ m 2 )  doo ]-1 
k = tiT- (,r p -+ a0n) (17) 

An exactly similar expression holds for rr+p-+.(rr 0, co, A 0) A ++ (refs. [15, 20, 21]). 
It=2 In fig. 4 we show the resulting values of Roo (t) determined from the two sets of 

reactions. Using these values we can then proceed to evaluate the I t = 2 OO Regge cut 
in forward 7rrr scattering, giving 

It=2 dolt=2 ~ 1.7 ~b/GeV 2 
oTO T ~ 40 vb , dt  t=0 

at s = 10 GeV 2. 
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Fig. 4. Evaluation of the fixed-pole residue R It=2 (t) from the data of refs. [ 14, 15, 17, 20, 21]. 
PP 

It is of interest to compare the evaluation of  this cut contr ibut ion with that de- 
rived from the eikonal model, where the fixed-pole residue is replaced by just the 
7r 0 contribution.  This corresponds to taking only the first term on the left-hand-side 
of (16). In the n = 1 sum rule, (13), the 7r 0 cross section is suppressed because of the 
damping factor t, which implies do o (A 0) ~ -~ do o (w). Experimentally,  da o (zr 0) is 
roughly twice dap (co) so that the three terms on the left-hand-side of (16) are rough- 
ly 2: -- 1 " ~. Thus the sum Rpp (t) is ~ -~ do o (Tr°) which means that the resulting am- 
plitude F cut is roughly half of the eikonal model estinaate. Note that the rapid con- 
vergence of the series is reassuring both for the superconvergence hypothesis  and for 
our practical calculation, where we have neglected the higher resonance contributions 

to the sum. 

3. 2. Semilocal duality 

Perhaps the most interesting results of  the scheme follow from semilocal duality 
considerations. Semi loca ldual i ty  applied to reggeon-particle scattering suggests the 
leading Regge exchange (i.e. M in eq. (1(3)) to interpolate the resonance contributions 
in an average sense. In analogy with particle-particle scattering, this interpolation is 
expected to hold down to low-mass resonances, if the resonance contributions are 
dominantly additive and there are no fixed-pole contributions. The averaging is to be 
done on resonance contributions over a typical range of 1 GeV 2. In terms of  the re- 
sonance product ion cross sections of  eq. ( !  0), this means that in an average sense 

~ d ° R ~  ,..,_PRM (0)-  2ai (t) -~-/ (18) 

Therefore at fixed s and t, we know how the average resonance product ion cross 
section behaves as a function of the resonance mass, once we know the exchanged 
trajectory ot i. 

Eq. (18)has  two important ,  though rather obvious, corrollaries. Firstly the ratio 
of n, B to vector, tensor exchange contr ibut ions is expected to increase linearly with 

2(a M (t) a n (t)) the resonance mass squared, i.e. ~ v i - . Secondly, any given Regge-ex- 



182 P. Hoyer et aL, Finite-mass sum rules 

change contribution doR/dt is expected to show a logarithmic anti-shrinkage with in- 
creasing resonance mass squared, at fixed energy. 

We present below a detailed comparison of eq. (18), and the two corrollaries men- 
tioned above, for mesonic resonance production data involving n- and f, co exchange. 
The trajectory parameters were taken to be 

oLf, oo (t) = 0.5 + t , ~rr (t) = - 0.02 + t . (19) 

(i) The n-exchange. Consider the n-exchange contribution to the reactions K - p - +  
nX and n p-+ nX. 

The relevant resonances in the missing-mass channel are (K*, K**) and (p, f, g). 
Moreover, n-exchange is known to dominate these production cross sections at small 
I tl both from energy dependence and density-matrix measurements (dominance of 
PO0 suggests small cut effects). 3"he K - n -  and rr n -  channels being exotic, the fixed 
poles vanish, i.e. eq. (10) can be written for both odd and even n as 

N do R 2an(t)-2 0.5 2aTr(t)+n+ 1 
a [" d p v n - -  [ r r - ( K - ) p - + n X ]  =s  f a ( t ) N  (20) 
0 dM2dt 

Semilocal duality (i.e. eq. (18)), requires the Regge term on the right to average 
resonance contributions over bins of  1 GeV 2 in M 2. Since the resonances here are 
1 GeV 2 apart, a single resonance is expected to average the Regge contribution in a 
given bin. The experimental data for (do/dt) (K p-+(K*, K**)n), multiplied by the 
density-matrix element P00, are compared with the Regge contribution in fig. 5, over 
two bins defined by the mid points of the K* -K** and K** -K*** mass squares. This 
is done separately for n = 0 and 1 in (a) and (b). Similarly the experimental values of 
PO0 (do~dO ( n - p  -+ (p, f, g)n) are compared with the Regge contribution in figs. 6a and 
b over three bins, defined in an analogous fashion. The above figures suggest that 
semilocal duality works very well here even down to quite low masses. Moreover, the 
size of the integral (~  f~r (t)) in the two cases agrees well with SU (3). 

(ii) The f; co exchange. Consider the f-co exchange contributions to the reactions 
K-p -+  X - p  and n -p -+  X-p .  The resonances in the missing mass are (K, K*, Q,K**) 
mad (rr, p, A1, A2, g), respectively. 

The f-co contributions to the elastic cross sections are taken from standard Regge 
fits [ 18]. Those for K*, K** and p, A2, g production are obtained using an isospin 
separation 

d°to,f _ do 1 do . 
dt  dt (K-p-+  (K*- ,  K * * - ) p ) - a "  ~7-(r~-P-+ (K*0, K**V n) m 

(21) 

d°w,f do _ do AO ' . 
d t  = ~ - ( n - P ~ ( P ' A 2 '  g - ) P ) - ~  ~ (n-p-->(p° '  gO)n) 

This assumes that the isospin 0 exchange is dominantly f, co and that there is negligible 
interference between the isospin 0 and 1 exchanges. The latter assumption has only 
been checked for p-production, but it is certainly a reasonable assumption for small 
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do" d 
dtdv 

p b/GeV ~ 

~00 
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K'p --~ X°n X ° = K~, K** 
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/ K* K H 

.5 1.0 

(a) 

l's 
(GcV z) 

V ~ I V1"§6 
dtdv 

pb/GcV 2 

&0C 
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20O 

. 

15 1.0 v (GeV 2 i 

Fig. 5. Experimental v n (dcrrr/dt) (K p~K*, K**)n) at 10 GeV/c for 0.05 ~< It I ~ 0.15 compared 
with the ~r-exchange Regge contribution. (a) n = 0, (b) n = 1. Data from ref. [22]. 

t-values. The f- and w-residues on the right of eq. (10)are equal by exchange degen- 

eracy. The signature factors will also be equal at small-t values. Thus for small-t values 
one can treat them together as a single exchange, giving 

N doR, to = 
f d~'~ 'n - - ( T r -  ( K - ) p - + X p )  s2af'to(t)-2f/: w (t) 
0 dM2d t 

X N 0"5-2af to (t)+n+ 1 
' ( 2 2 )  

In contrast to (20), eq. (22) is valid only for odd n, since o and ~ here are identical. 
The resonance contributions in the K - p  reaction are compared with the Regge con- 
tribution in fig. 7 over the two mass bins defined earlier. The K* bin contains the 
non-diffractive K-contribution as well. The cross-over observed in Q, C~ production 
[ 12] allows one to estimate the non-diffractive component  which turns out to be 
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lOOO 

da 
dtdv 
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500 
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Fig. 6. Experimental u n (da~r/dt) ( n - - *  (p0, f0, g0)n) at 11 GeV/e for 0.04 < Itl <~ 0.16 compared 
with the n-exchange Regge contribution. (a) n = 0, (b) n = 1. Data from ref. [24]. 

roughly 10% of all Q-production. In fig. 7, this contr ibut ion has been added to the 
K** bin. Similarly the resonance contributions in the n - p  reaction are compared with 
the Regge interpolation in fig. 8 over the three mass bins defined earlier. A 10% non- 
diffractive component  in the A 1 cross section was found to make only a small dif- 
ference. 

The agreement is quantitative in the K - p  reaction. However, for the n - p  case, the 
g-contribution falls short of the Regge interpolation, indicating an effective a M (0) 
"~ 0.2. We do not know, if this is a genuine effect of the lower-lying trajectories in the 
bb channel (which often tend to lower the effective a in the low-energy region), or is 
simply due to the uncertainty in evaluating ( d o ~ / d  t) ( ~ - p - ~  g -p ) ,  as a difference of 
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v d ~ ¢  / K-p --=,X'p X-= K,K,~Q,K *" dtdv 
,ub/GeV 2 I,I 10 GeV O~<ltl~< .2 ~.........~.v°"7 

/ / - I  
I /  K" Q K'* 

'~ .5 1.0 ; (GcV 2) 
K 

Fig. 7. f-co exchange contributions to v(da/dt) (K-p-, (K, K*, Q,K**)p) at 10 GeV/c for 
0 ~<ltl ~< 0.2 compared with the f-co exchange Regge contribution. Data from ref. [22]. 

two large experimental quantities in eq. (21). Moreover, an incident momentum of 
8 GeV/c, above which we do not have simultaneous g -  and gO production data, may 
not be asymptotic for g-production. In fact, the energy dependence of  the g0 cross 
section between 7 and 11 GeV/c is slower than expected from n-exchange. 

(iii) Rat io  o f  n to f-co exchange. From eq. (18), (20) and (22), one immediately 
gets, for fixed s and t 

d° R 
v - ~ -  Or- ( K - ) p ~  nX) 

v doR X)~ 2af w , 
/ ---d-~'-~-w ( n -  ( K - ) p - + p  ~(VR) , (t)-2%(t) 

(23) 

i.e. the ratio of  n to f - w  exchange cross sections, averaged over the same resonance 
mass interval, should increase linearly with the resonance mass squared. 

Fig. 9 shows a test of the above prediction for the 10 GeV/c K - p  reaction. The 
first bin represents the ratio 

200 
v d o  - 

dv 
{jJ.b) 

o 0.5 I.O v{~C~V 2} 1.5 
Fig. 8. f-co exchange contributions to v(do/dt) (n-p~ 0r, P, A2,g)P) at 8 GeV/c for 
0.05 ~< Itl ~ 0.25 compared with the f-co exchange Regge contribution. Data from refs. [21, 25-27 
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do n / I - d e f t  o dof,~o ~'] 
dt (K p - ~ K * ° n ) / L ~ = ; - ( K - p ~ K - p ) +  ~ 7 - ( K  p ~ K * - p ) j  , 

and the second bin 

do 
dt (K-p-~K**°n)/Fd°f'w d°f'w )1 / [ ~  ( K - p ~ Q - p )  + ~ ( K - p ~ K * * - p  

In fig 10 we show a test of this ratio for the 8 GeV/c 7r p reaction. The three 
bins contain the ratios 

do n / [ d o f  dcro )] 
dt ( n -P~P°n )  [.-d~-(Tr-P~Tr-P)+-~ -- (Tr p ~ p - p  

da n / dof daTr / do 
dt ( n - P - ~ f n ) / - d 7  (n-p-+A2p)  ' -d-7 -(lr-p-+g°n) - ~ ( ~ - P ~ g - P )  " 

In each case the ratio does increase, and the rate is consistent with a linear depen- 
dence on the resonance mass squared. 

Another example of this phenomenon is the increase of the ratio B/p exchange 
as we go from 03 to A 0 production, as mentioned earlier. The increase of the 7r/f-03 
exchange ratio, has been noted earlier as an experimental feature at least for the K-p 
reaction [22]. It is clear that semilocal duality in the reggeon-particle amplitude pro- 
vides a natural explanation of this phenomenon. 

(iv) A ntishrinkage. The semi-local duality relation ( 1 8) implies a logarithmic anti- 

cr~ (K-p --=.X°n ) 
R[v)~ = 10 GcV 

Rlv) 

.5 

I 

.5 1.0 ~ (GcV 21 

Fig. 9. Rat io o f  n / f - ~  exchange to the react ion K - N  ~ X N  at t 0 GeV/c  fo r  0 ~< I t l ~  < 0.2. Data 
from ref. [22]. 
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Fig. 10. Ratio of 7r/f-co exchange to the reaction 7r--N-~ XN at 8 GeV/c for 0.05 ~< Itl ~< 0.25. 
Data from refs. [21,25-27 ]. 
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shrinkage of do/dt  as we go higher in the resonance mass at fixed incident momentum 
[lS]. 

We shall compare the prediction of eq. (18) with f-co exchange cross sections. 
There is no clear way to estimate the n-exchange contribution at larger I t I values. For 
the f-co exchange cross sections, we should have 

( d° f'R~° ) / (  d°fR'c° + 
u d t  (rr- (K- )p -+pX)  p ~ 7 -  (rr- ( K - ) p ~ p  

( 1 t 2 

2 ~ - c o ( t l  / 2 ) 
(VR) ' (24) 

The above prediction is compared with the K - p  data in fig. 11 with t 1 = - 0.2 
and t 2 = - 0.6 GeV 2. The two bins contain K*-  + non-diffractive K -  and K**- + non 
diffractive Q- ,  as before. 

In the rr-p case the co- and f-exchange resonances should be treated separately. 
since the two signature factors are not equal at larger Itl values. The co-exchange re- 
sonances are p and g while the f-exchange resonances are n and A 2. For the first case, 
data is restricted to the itl < 0.3 GeV 2 region, due to the ambiguity in extracting 
(dow/d t )  (n p-+g-p) .  In the second case one has the cross sections over a wider 
t-range, but the n-mass is too small to test a semilocal duality relation quantitatively. 
Nonetheless, we have compared the resonance production data for these two cases 
with eq. (24)in figs. 12 and 13. The agreement with the antishrinkage prediction for 
both the K p and n - p  reactions seems very encouraging. 

It should be stressed that the quantitative prediction (24) is expected to hold only 
for individual Regge exchanges. If there are several Regge exchanges in the ac channel, 
then the net resonance production cross section may show an anti-shrinkage pattern 
quantitatively different from (24). 

Finally we note that the semilocal duality relation may work better for the ratios 
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R(v) 

R(v) = _~f,~4 K-p ---X-p) t = - .6 

Of, w( K'p - "X-p)  t = - .2 vO.S 
.15 

o.'5 I.'o v(G~v2) 
Fig. 11. Ratio of  f-co exchange contr ibut ions  to the reaction K p ~ X - p  at 10 GeV/c at two 
values of  t, - 0 . 2  and - 0 . 6  compared with the f-co exchange Regge term. Data f rom ref. [22 ]. 

(i.e. eq. (23) and (24)), than for the individual exchanges of eq. (18). For instance, 
there could be a non-negligible contribution from a lower-lying trajectory in the 

0.15 

R (v) = 

0.10 

R(v) 

005 

w exch. contrib, at t = -. 3 " L . t  v°'¢ 
;, ,-~E~h. ~ - -  t--~- .-  

8 GcV p -g -  production 

p g 

o 0'.5 I'O v (GeV 2) 1.5 

Fig. 12. Ratio of  co-exchange contr ibut ions  at two values of  t, - 0.3 and - 0. l to the reactions 
n N ~  (p, g)N. The ratio for p-product ion at 6 GeV of ref. [29] has been extrapolated to 8 GeV as 
suming Regge behaviour to compare with the  g-production data of  ref. [26]. 
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0.10 ~ ,  , f e x c h ,  contrib. O.5~<lt l~<0.9 - / 

/ f -  Tt t , { - , A 2  I , 
0.5 1.0 v {GeV 2) 116 

Fig. 13. Ratio of  t-exchange contr ibut ions  in two ranges of I t l a round 0.75 and 0.25 to the reac- 
tions nN-~  (rr, A2)N at 8 GeV/c. Data from ref. [21]. 

bb channel. As long as this contribution is additive, as in the intermediate energy re- 
gion of  two-particle reactions, its contributions to the numerator and the denomina- 
tor cross sections of  eq. (23) and (24) should be partly self-compensatory. In particu- 
lar, if the effective a M (0) for the two cross sections are lowered by the same amount, 
then eqs. (23) and (24) would not be affected. 

4. Discussion 

As we have seen, the FMSR provide several interesting relations between quasi- 
two-body reactions of the type ab-~ cdi. The experimental verification of these re- 
lations, on the other hand, lends support for the validity of the concept of duality 
for reggeon-particle amplitudes. 

The use of  quasi-two-body reactions for investigating duality in reggeon-particle 
scattering has several practical advantages, compared to a more inclusive approach 
using the entire reaction ab ~ cX. We shall list some of them here. 

(i) For most reactions ab ~cdi ,  the production mechanism of the resonance d i 
has already been extensively studied. From the energy dependence and the decay 
distributions we can separate out the specific trajectory whose contribution we want 
to investigate. We did not have to consider any interference terms. For the pairs n-B 
and p, co-f, A 2 this follows from exchange degeneracy, whereas spin-parity constraints 
ensure no interference between the natural-and unnatural-parity exchanges in the un- 
polarized cross section. 

Moreover, since we used the Harari-Freund two-component duality throughout 
for the reggeon-particle amplitude, we need never consider pomeron exchange in the 
bb channel. Altogether, this means that far fewer triple-Regge couplings are intro- 
duced into the FMSR than would be the case for the general inclusive reaction. 

(ii) In many cases the reactions ab -~ cdi can be studied experimentally, although 
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the inclusive reaction ab ~ cX is difficult to observe for technical reasons. For exam- 
ple, there is no data on the reactions n(K)p-+ Xn for small-momentum transfers be- 
tween the nucleons. However, the quasi-two-body reactions n(g.)p-+(p,  f, g) 
(K*, K**)n have been studied in detail. The availability of a large number of  different 
reactions makes a systematic study simpler for the quasi-two-body processes than for 
true inclusive reactions. 

(iii) In all applications of  the FMSR the condition s>>M 2 must be satisfied in order 
to ensure that the cross section is proportional to a reggeon-particle amplitude. In 
our analysis M 2, being the (mass) 2 of the first few resonances d i, is generally rather 
small. Thus s/M 2 ~ 1 although the available data is at relatively low energies 
(s ~ 20 GeV2). 

(iv) Finally the question of Regge cuts. The FMSR are valid only for factorizable 
pole exchanges. There is little point in trying to incorporate cuts into the formalism, 
as long as we have no reliable model for the cuts to start with. Thus the best thing 
one can do is to restrict oneself to cases where the cut contaminations are expected 
to be small from phenomenological analysis. The cuts in the bb channel are expected 
to be always small, in analogy with two-body forward elastic amplitudes. As to cuts 
in the a~ channel, the situation is again best known for the quasi-two-body reactions. 
For the vector and tensor resonance productions there are, in fact, some phenome- 
nological evidences to suggest that pole exchanges are dominating in the a~ channel. 
The density matrix measurements show Poo and (/911 + P l - I )  dominance for the 
n-exchange and f -  co exchange cross sections at small t.. All the cross sections show 
turnovers in the forward direction. Finally there is the well-known signature dip in 
(do~o/dt) (nN ~ p N )  (ref. [29]). 

5. Further possibilities 

The aforesaid formalism is expected to be useful in a much wider context of two- 
body phenomenology. We wish to conclude by indicating some of  these applications. 

(a) Resonance-background separation. Like the resonance contributions, analysed 
here, the background contribution in the missing-mass channel is also constrained by 
eq. (10). The average background contribution (doB/d t) is expected to grow like 

2 ctp(o) 2t~t(t) (3 ' / )  - " . This constraint can be used in making a resonance-background sepa- 
ration in the large M 2 region, and also to study the duality properties of  the broad 
daughter resonances, which are supposedly contained in the polynominal back- 
ground. 

We have looked at the background contributions in K - p ~  Xn at 10 GeV/c and in 
n - p - + X n  at 11 GeV/e. The result is shown respectively in figs. 14 and 15. As a first 
approximation we have assumed that the background and the resonances have the 
same inelasticity and production mechanism. Figs. 14 and 15 show that the background 
behaving like (M2) 1-2an(t) is consistent with the data. However, in the absence of 
data on the complete reaction ~r(K)p ~ Xn we are unable to draw any definite con- 
clusions. 



P. Hoyer et al., Finite-mass sum rules 191 

do" 

IOC 

8G 

B(] 

t.C 

20 

0 1.0 ~ 20 3.~ ,i0 slo M'('K,. c.,v' 
Fig. 14. M 2 distribution for K - p ~ X n  at 10 GeV/c for 0.05 ~< Itl ~ 0.15. The distribution has 
been obtained from the MK_n+ distribution in K - p ~  K-Tr+n (ref. [22]) by dividing the distribu- 
tion into three bins (dashed vertical lines) and assuming the inelasticity in each bin to be that of 
the dominant resonance (K*, K** and K***). The cross section has been multiplied by Poo to 
ensure n-exchange. The background fit, labelled by P, corresponds to a (M 2) 1-2a~r(t) behaviour. 

This type of  analysis should be very interesting for reactions like n(K.)p ~ XA, for 
which data on the inclusive M 2 distribution are available. The validity of  the Harari- 
Freund hypothesis for reggeon-particle amplitudes could then be directly tested. 

(b) Mesons produced by baryon exchange. The set of mesonic resonances con- 
sidered occur also in the backward reactions 7r(K)p ~ pX and in the annihilation reac- 
tions ~p ~ n ( K ) X .  These reactions are dominated by baryon exchange, with 
~B (o)  ~ - 0.3. 

The resonance product ion cross section (daR/dt> should then behave like 
vp~M (0)- 2a, B (t). 

We expect  a M (0) ~- 0.5 if these normal resonances are dual to normal Regge ex- 
changes, and a M (o) < <  0.5 if they are dual only to exotic exchanges [28]. The first 
alternative would suggest a much bigger g/p (or K**/K*) ratio in backward produc- 
tion or in annihilation, compared to the forward production case considered earlier. 
But this would not  be the case if the second alternative were true. Thus a compari- 
son of  the forward and backward production cross sections of  these meson resonances 
would help to clarify the duality situation in baryon-ant ibaryon scattering. 

(c) Baryon resonances. The duali ty analysis should be extended to the case o f  
baryon resonance production.  On the one hand, one can study to what extent  the 
non-diffractive resonances satisfy the semilocal duality constraint (20) and its two 
corollaries [30]. On the other hand, the diffractive resonances can presumably be 
isolated by considering pp -+ pX at ISR or Batavia energies. The behaviour of  these 
diffractive resonances should help to answer the question of  two-component  duality 
for pomeron-part icle scattering [7, 32]. 
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Fig. 15. M 2 distribution for 7r-p ~ Xn at 11 GeV/c for 0.04 ~< I tl < 0.16. The distribution has 
been obtained as for the K - p  reaction in fig. 14 from data on 7 r - p ~  7r-Tr+n (ref. [24[). The 
curves labelled P (pomeron exchange and P + M (pomeron + meson exchange) have been drawn 
using the triple-Regge coupling constants determined from the fits of  fig. 14 and values for 
Plv~ P M  o ne fro f s o c o - ,,t37r'-" / f 3 ~  btai d m i t  to t tal ross secti ns [311 . 
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